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Tim’s Rules for a Great Learning 
Experience 

• Our plan for the morning .. Active learning! 
– We will mix short lectures with short exercises. 
– You will use your laptop to connect to a multiprocessor  

server. 
• Please follow these simple rules 
– Do the exercises that we assign and then change things  

around and experiment. 
– Embrace active learning! 

– Don’t cheat:  Do Not look at the solutions before you  
complete an exercise … even if you get really frustrated. 
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Outline 

•  Introduction to OpenMP 
•  Creating Threads 
•  Synchronization 
•  Parallel Loops 
•  Data environment 
•  Memory model 
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OpenMP* overview: 

omp_set_lock(lck) 

#pragma omp parallel for private(A, B) 

#pragma omp critical 

C$OMP parallel do shared(a, b, c) 

C$OMP PARALLEL  REDUCTION (+: A, B) 

call OMP_INIT_LOCK (ilok) 

call omp_test_lock(jlok)  

setenv OMP_SCHEDULE “dynamic” 

CALL OMP_SET_NUM_THREADS(10) 

C$OMP DO lastprivate(XX) 

C$OMP ORDERED 

C$OMP  SINGLE PRIVATE(X) 

C$OMP SECTIONS  

C$OMP MASTER C$OMP ATOMIC 

C$OMP FLUSH 

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C) 

C$OMP THREADPRIVATE(/ABC/) 

C$OMP PARALLEL COPYIN(/blk/) 

Nthrds = OMP_GET_NUM_PROCS() 

!$OMP  BARRIER 

OpenMP:  An API for Writing Multithreaded 
Applications 
 

§ A set of compiler directives and library routines  for 
parallel application programmers 

§ Greatly simplifies writing multi-threaded (MT) programs 
in Fortran, C and C++ 

§ Standardizes established SMP practice + vectorization and 
heterogeneous device programming 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 



The growth of complexity in OpenMP 
•  OpenMP started out in 1997 as a simple interface for the application 

programmers more versed in their area of science than computer science. 

•  The complexity has grown considerably over the years! 
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The complexity of the full spec is overwhelming, so we focus on the 16 constructs most OpenMP 
programmers restrict themselves to … the so called “OpenMP Common Core” 



Resources 

•  We can only give an overview today 
– We won’t cover all features 

•  Lots of information available at ARB’s website 
– Specifications, technical reports, summary cards for downloading 
– Tutorials and publications; links to other tutorials; tools and compilers 

•  Tutorials also at: 
– Supercomputing conferences 
– Annual OpenMPCon, IWOMP workshop  
– Some user sites, e.g. NERSC 

http://www.openmp.org 
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OpenMP basic definitions: Basic Solution stack 

OpenMP Runtime library 

OS/system support for shared memory and threading 
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Where Does OpenMP Run?  

Supported (since OpenMP 4.0) 
with target, teams, distribute, 

and other constructs 

Target Device: Intel® Xeon Phi™ coprocessor 

Host 

Target Device: GPU 
OpenMP 4.5 
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How Does OpenMP Work? 

•  Teams of OpenMP threads are created to perform the 
computation in a code  
– Work is divided among the threads, which run on the different cores 
– The threads collaborate by sharing variables 
– Threads synchronize to order accesses and prevent data corruption 
– Structured programming is encouraged to reduce likelihood of bugs 
 

•  Most Fortran/C/C++ compilers implement OpenMP 
– Use compiler “flag”, sometimes a specific optimization level 
 

•   Alternatives: 
– MPI  
– POSIX thread library is lower level 
– Automatic parallelization is higher level (user does nothing) 

q  But usually successful on simple codes only 
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int	main(int	argc,	char	*argv[])	{	
		#pragma	omp	parallel		
		{	
				int	ID	=	omp_get_thread_num();	
				printf("hello	from	thread	%d\n",	ID);	
		}	
		return	0;	
}		

Programming in Pthreads vs. OpenMP 

10 

#include	<pthread.h>	
#define	DEFAULT_NUM_THREADS	4	
		
/*	encapsulate	multiple	args	to	a	thread	*/	
typedef	struct	args	{	
				int	id;								/*	this	thread's	number	*/	
}	args_t;	
		
/*	function	that	is	run	inside	each	thread	*/	
void	*do_hello_world(void	*arg)	
{	
				args_t	*ap	=	(args_t	*)	arg;	/*	unpack	incoming	args	*/	
				printf("Hello	from	thread	%d\n",	ap->id);				/*	ACTUAL	WORK	*/	
				return	NULL;	
} 
	
int	main(int	argc,	char	*argv[])	
{	
				int	i,	num_threads	=	DEFAULT_NUM_THREADS;	
				pthread_t	*thread_pool;	
				args_t	*thread_args;	
		
				if	(argc	>	1)	{	
								num_threads	=	atoi(argv[1]);	
								if	(num_threads	<	0)	{	
												num_threads	=	DEFAULT_NUM_THREADS;	
								}	
				}	
				thread_pool	=	(pthread_t	*)	malloc(num_threads	*							
																																							sizeof(*thread_pool));	
				thread_args	=	(args_t	*)				malloc(num_threads	*		
																																							sizeof(*thread_args));	
				/*	create	and	run	threads:	pass	id	of	thread	to	each	*/	
				for	(i	=	0;	i	<	num_threads;	i	+=	1)	{	
								thread_args[i].id	=	i;	
								pthread_create(&thread_pool[i],	NULL,	do_hello_world,	
																							(void	*)	&thread_args[i]);	
				}	
				/*	wait	for	all	threads	to	finish	*/	
				for	(i	=	0;	i	<	num_threads;	i	+=	1)	{	
								pthread_join(thread_pool[i],	NULL);	
				}	
				free(thread_args);	
				free(thread_pool);	
				return	0;	
} 	
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What Does the User Have to Do? 

•  Starting point is most often MPI or sequential program 
code  

•  Application developer must decide how the work can be 
divided up among multiple threads 
–  Identify parallelism and needed synchronization 
– Getting this right is the user’s responsibility! 
–  Insert OpenMP constructs that represent the strategy 

•  Getting good performance requires an understanding of 
implications of chosen strategy 
– Translation introduces overheads 
– Data access pattern might affect performance 

•  Sometimes, non-trivial rewriting of code is needed to 
accomplish desired results 

User makes strategic decisions;  compiler figures out details 
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OpenMP Usage 

OpenMP 
Source 

Sequential 
Program 

Parallel 
Program 

OpenMP 
compiler 

sequential 
compiler 

 
Info on compiler used in training 

Compiler Name	 Compiler 
Version	 OpenMP version	 OpenMP flag	 C/C++/Fortran compiler	

GNU Compiler Collection (gcc) 
[cori,	bluewaters,	Edison,	stampede	2]	 7.1.0	 4.5	 -fopenmp	 gcc, g++, gfortran	

Intel Compilers 
[cori,	bluewaters,	Edison,	stampede	2]	 18.0.1	 4.5	 -qopenmp	 icc, icpc, ifort	

Fortran/C/C++ 
compiler 
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OpenMP basic syntax 
•  Most of the constructs in OpenMP are compiler directives. 

#pragma omp construct [clause [clause]…] 
– Example 

#pragma omp parallel num_threads(4) 
 

•  Function prototypes and types in the file:   
#include <omp.h> 
use omp_lib 
  

•  Most OpenMP* constructs apply to a “structured block”. 
– Structured block: a block of one or more statements with 

one point of entry at the top and one point of exit at the 
bottom.  
– It’s OK to have an exit() within the structured block. 
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Exercise, Part A: Hello world 
Verify that your environment works 
•  Write a program that prints “hello world”. 

 

#include<stdio.h> 
int main() 
{ 

   

     printf(“ hello ”); 
     printf(“ world \n”); 
 
} 

% cp –r /project/projectdirs/training/OpenMP_Feb2018 . 
Compile on Login Nodes, grab a node, execute ./a.out 
% cc –qopenmp mycode.c   or % ftn –qopenmp mycode.f 
% salloc -q interactive -C knl,quad,cache -N 1 –t 1:00:00 
% salloc --reservation=omp_hsw -C haswell -N 1 -t 1:00:00 
or  
% salloc --reservation=omp_knl -C knl,quad,cachel -N 1 -t 1:00:00 
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Exercise, Part B: Hello world 
Verify that your OpenMP environment works 
•  Write a multithreaded program that prints “hello world”. 

 

#include <stdio.h> 
int main() 
{ 

 

 

      

     printf(“ hello ”); 
     printf(“ world \n”); 

 
} 

Switches for compiling and linking 

gcc –fopenmp  Gnu (Linux, OSX) 

pgcc -mp  pgi  PGI (Linux) 

icl /Qopenmp   Intel (windows) 

icc –fopenmp   Intel (Linux, OSX) 

#pragma omp parallel 

{ 

} 

#include <omp.h> 

} 
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Solution 
A multi-threaded “Hello world” program 

•  Write a multithreaded program where each thread prints “hello world”. 

#include <omp.h> 
#include <stdio.h> 
int  main() 
{ 

#pragma omp parallel 
 { 

 

     printf(“ hello ”); 
     printf(“ world \n”); 
   } 
} 

Sample Output: 
hello hello world 

world 

hello  hello world 

world 

OpenMP include file 

Parallel region with 
default number of threads 

End of the Parallel region 

The statements are interleaved based on how the operating schedules the threads  
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Solution 
A multi-threaded “Hello world” program 

•  Write a multithreaded program where each thread prints “hello world”. 

#include <omp.h> 
#include <stdio.h> 
int  main() 
{ 

#pragma omp parallel 
 { 

     int ID = omp_get_thread_num(); 
     printf(“ hello(%d) ”, ID); 
     printf(“ world(%d) \n”, ID); 
   } 
} 

Sample Output: 
hello(1) hello(0) world(1) 

world(0) 

hello(3)  hello(2) world(3) 

world(2) 

OpenMP include file 

Parallel region with 
default number of threads 

End of the Parallel region 

The statements are interleaved based on how the operating schedules the threads  

Runtime library 
function to return a 
thread ID 
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Outline 

•  Introduction to OpenMP 
•  Creating Threads 
•  Synchronization 
•  Parallel Loops 
•  Data environment 
•  Memory model 
•  Irregular Parallelism and tasks 
•  Recap 
•  Beyond the common core: 
– Worksharing revisited 
– Synchronization: More than you ever wanted to know 
– Thread private data 
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OpenMP programming model:  

Fork-Join Parallelism:  
u Master thread spawns a team of threads as needed. 

u Parallelism added incrementally until performance goals are met, 
i.e., the sequential program evolves into a parallel program. 

Parallel Regions 
Master 
Thread 
in red 

A Nested 
Parallel 
region 

Sequential Parts 
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Thread creation: Parallel regions 

•  You create threads in OpenMP* with the parallel construct. 
•  For example, To create a 4 thread Parallel region: 

double A[1000]; 
omp_set_num_threads(4); 
#pragma omp parallel 
{ 

 int ID = omp_get_thread_num(); 
     pooh(ID,A); 
} 

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block 

Runtime function to 
request a certain 
number of threads 

Runtime function 
returning a thread ID 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 
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Thread creation: Parallel regions example 

•  Each thread executes the 
same code redundantly. 

	double A[1000]; 
omp_set_num_threads(4); 
 #pragma omp parallel 
{ 

         int ID = omp_get_thread_num(); 
    pooh(ID, A); 
} 
 printf(“all done\n”); omp_set_num_threads(4) 

pooh(1,A) pooh(2,A) pooh(3,A) 

printf(“all done\n”); 

pooh(0,A) 

double A[1000]; 

A single 
copy of A is 

shared 
between all 

threads. 

Threads wait  here  for all threads to finish 
before proceeding (i.e., a barrier) 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 
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Thread creation: How many threads did 
you actually get? 
•  You create a team threads in OpenMP* with the parallel construct. 
•  You can request a number of threads with omp_set_num_threads() 
•  But is the number of threads requested the number you actually get? 
–  NO!  An implementation can silently decide to give you a team with fewer threads. 
–  Once a team of threads is established … the system will not reduce the size of the team. 

double A[1000]; 
omp_set_num_threads(4); 
#pragma omp parallel 
{ 

 int ID       = omp_get_thread_num(); 

             int nthrds = omp_get_num_threads(); 
     pooh(ID,A); 
} 

l  Each thread calls pooh(ID,A) for ID = 0 to nthrds-1!

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block 

Runtime function to 
request a certain 

number of threads 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 

Runtime function to 
return actual 

number of threads 
in the team 



Internal control variables & the number of threads 
•  There are a few ways to control the number of threads.    
– omp_set_num_threads(4) 

•  What does omp_set_num_threads() actually do? 
–  It resets an “internal control variable” the system queries to select the 

default number of threads to request on subsequent parallel constructs. 

•  Is there an easier way to change this internal control variable … 
perhaps one that doesn’t require re-compilation?  Yes. 
– When an OpenMP program starts up, it queries an environment variable 

OMP_NUM_THREADS and sets the appropriate internal control variable 
to the value of OMP_NUM_THREADS 

•  For example, to set the initial, default number of threads to 
request in OpenMP from my apple laptop 

> export OMP_NUM_THREADS=12 

23 



Performance Tips 

•  Experiment to find the best number of threads on your system 
•  Put as much code as possible inside parallel regions 
– Amdahl’s law: If 1/s of the program is sequential, then you cannot 

ever get a speedup better than s 
– So if 1% of a program is serial, speedup is limited to 100, no matter 

how many processors it is computed on 
•  Have large parallel regions 
– Minimize overheads: starting and stopping threads, executing 

barriers, moving data into cache  
– Directives can be “orphaned”; procedure calls inside regions are fine 

•  Run-time routines are your friend 
– Usually very efficient and allow maximum control over thread behavior 

•  Barriers are expensive 
– With large numbers of threads, they can be slow 
– Depends in part on HW and on implementation quality  
– Some threads might have to wait a long time if load not balanced 

24 
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An interesting problem to play with  
Numerical integration 

∫ 	4.0 
(1+x2) dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as a 
sum of rectangles: 

Where each rectangle has width Δx and 
height F(xi) at the middle of interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 
X 0.0 
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Serial PI program 

static long num_steps = 100000; 
double step; 
int main () 
{    int i;    double x, pi, sum = 0.0; 
 

   step = 1.0/(double) num_steps; 
 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

} 

See OMP_exercises/pi.c 
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Serial PI program 

#include <omp.h> 
static long num_steps = 100000; 
double step; 
int main () 
{    int i;    double x, pi, sum = 0.0, tdata; 
                

   step = 1.0/(double) num_steps; 
               double tdata = omp_get_wtime(); 

   for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
   } 
   pi = step * sum; 

               tdata = omp_get_wtime() - tdata; 
               printf(“ pi = %f in %f secs\n”,pi, tdata); 
} 

See OMP_exercises/pi.c 

The library routine 
get_omp_wtime() is 

used to find the 
elapsed “wall time” 
for blocks of code 
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Exercise: the parallel Pi program 
•  Create a parallel version of the pi program using a parallel 

construct: 
           #pragma omp parallel. 
•  Pay close attention to shared versus private variables. 
•  In addition to a parallel construct, you will need the runtime 

library routines 
– int omp_get_num_threads();   
– int omp_get_thread_num(); 
– double omp_get_wtime(); 
– omp_set_num_threads(); Time in Seconds since a 

fixed point in the past 

Thread ID or rank 

Number of threads in the team 

Request a number of 
threads in the team 
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Hints: the Parallel Pi program 
•  Use a parallel construct: 
           #pragma omp parallel 
 
•  The challenge is to: 
– divide loop iterations between threads (use the thread ID and the 

number of threads). 
– Create an accumulator for each thread to hold partial sums that you 

can later combine to generate the global sum. 

•  In addition to a parallel construct, you will need the runtime 
library routines 
–  int omp_set_num_threads(); 
–  int omp_get_num_threads();   
–  int omp_get_thread_num(); 
– double omp_get_wtime(); 



Results* 

30 
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

threads 1st 
SPMD* 

1 1.86 

2 1.03 

3 1.08 

4 0.97 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

*SPMD: Single Program Multiple Data 
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Why such poor scaling?    False sharing 
•  If independent data elements happen to sit on the same cache line, each 

update will cause the cache lines to “slosh back and forth” between threads 
… This is called “false sharing”. 

•  If you promote scalars to an array to support creation of an SPMD 
program, the array elements are contiguous in memory and hence share 
cache lines … Results in poor scalability. 

•  Solution: Pad arrays so elements you use are on distinct cache lines. 

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3] 
Core 0 Core 1 

L1 $ lines L1 $ lines 

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3 

Shared last level cache and connection to I/O and DRAM 
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#include <omp.h> 
static long num_steps = 100000;         double step; 
#define    PAD      8            // assume 64 byte L1 cache line size 
#define NUM_THREADS 2 
void main () 
{    int i, nthreads;  double pi, sum[NUM_THREADS][PAD]; 

   step = 1.0/(double) num_steps; 
   omp_set_num_threads(NUM_THREADS); 

    #pragma omp parallel 
    {   int i, id,nthrds; 
              double x; 
              id = omp_get_thread_num(); 
              nthrds = omp_get_num_threads(); 
              if (id == 0)   nthreads = nthrds; 

   for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) { 
    x = (i+0.5)*step; 
    sum[id][0] += 4.0/(1.0+x*x); 
   } 

     } 
   for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step; 

} 

Example: Eliminate false sharing by padding the sum array 

Pad the array so 
each sum value is 

in a different 
cache line 



Results*: pi program padded accumulator 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st 
SPMD 

1st 
SPMD 
padded 

1 1.86 1.86 

2 1.03 1.01 

3 1.08 0.69 

4 0.97 0.53 
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Outline 

•  Introduction to OpenMP 
•  Creating Threads 
•  Quantifying Performance and Amdahl’s law 
•  Synchronization 
•  Parallel Loops 
•  Data environment 
•  Memory model 
•  Irregular Parallelism and tasks 
•  Recap 
•  Beyond the common core: 
– Worksharing revisited 
– Synchronization: More than you ever wanted to know 
– Threadprivate data 
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Synchronization 

•  High level synchronization included in the common core 
(the full OpenMP specification has MANY more): 
– critical 
– barrier 

Synchronization is used to 
impose order constraints and 
to protect access to shared 
data 
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Synchronization: critical   
•  Mutual exclusion: Only one thread at a time can enter a 

critical region. 

float  res; 

#pragma omp parallel 

{     float B;   int i, id, nthrds; 

      id = omp_get_thread_num(); 

      nthrds = omp_get_num_threads(); 

       for(i=id;i<niters;i+=nthrds){ 

 B =  big_job(i); 

#pragma omp critical  
             res += consume (B); 

      } 
} 

Threads wait 
their turn – only 
one at a time 
calls consume() 
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Synchronization: barrier 
•  Barrier: a point in a program all threads must reach before any threads are 

allowed to proceed. 
•  It is a “stand alone” pragma meaning it is not associated with user code … it 

is an executable statement.  
double Arr[8], Brr[8];            int numthrds; 

omp_set_num_threads(8) 

#pragma omp parallel 

{    int id, nthrds; 

      id = omp_get_thread_num(); 

      nthrds = omp_get_num_threads(); 

      if (id==0) numthrds = nthrds;  

      Arr[id] = big_ugly_calc(id, nthrds); 

#pragma omp barrier  
      Brr[id] = really_big_and_ugly(id, nthrds, A);  
} 

Threads 
wait until all 
threads hit 
the barrier.  
Then they 
can go on. 
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Exercise 

•  In your first Pi program, you probably used an array to create 
space for each thread to store its partial sum. 

•  If array elements happen to share a cache line, this leads to 
false sharing. 

– Non-shared data in the same cache line so each update invalidates the 
cache line … in essence “sloshing independent data” back and forth 
between threads. 

•  Modify your “pi program” to avoid false sharing due to the 
partial sum array. 



Pi program with false sharing* 

39 
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

threads 1st 
SPMD 

1 1.86 

2 1.03 

3 1.08 

4 0.97 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

Recall that promoting sum to an 
array made the coding easy, but led 
to false sharing and poor 
performance. 
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#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{   int nthreads; double  pi=0.0;    step = 1.0/(double) num_steps; 

  omp_set_num_threads(NUM_THREADS); 
#pragma omp parallel 
{ 

 int i, id, nthrds;    double x, sum; 
 id = omp_get_thread_num(); 

              nthrds = omp_get_num_threads(); 
              if (id == 0)   nthreads = nthrds;    

   for (i=id, sum=0.0;i< num_steps; i=i+nthrds) { 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
   } 

             #pragma omp critical 
          pi += sum * step; 

} 
} 

Example: Using a  critical section to remove impact of false sharing  

Sum goes “out of scope” beyond the parallel 
region … so you must sum it in here.   Must 
protect summation into pi in a critical region so 
updates don’t conflict 

No array, so 
no false 
sharing.  

Create a scalar local 
to each thread to 
accumulate partial 
sums. 



Results*: pi program critical section 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st 
SPMD 

1st 
SPMD 
padded 

SPMD 
critical 

1 1.86 1.86 1.87 

2 1.03 1.01 1.00 

3 1.08 0.69 0.68 

4 0.97 0.53 0.53 
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#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{   int nthreads; double  pi=0.0;    step = 1.0/(double) num_steps; 

   omp_set_num_threads(NUM_THREADS); 
#pragma omp parallel 
{ 

 int i, id,nthrds;    double x; 
 id = omp_get_thread_num(); 

              nthrds = omp_get_num_threads(); 
              if (id == 0)   nthreads = nthrds;    

   for (i=id, sum=0.0;i< num_steps; i=i+nthreads){ 
    x = (i+0.5)*step; 

                              #pragma omp critical 
          pi += 4.0/(1.0+x*x); 
   } 

} 
pi *= step; 
} 

Example: Using a  critical section to remove impact of false sharing  

What would happen if 
you put the critical 
section inside the 
loop? 

Be careful where you 
put a critical section 
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The loop worksharing constructs 

•  The loop worksharing construct splits up loop iterations 
among the threads in a team 

#pragma omp parallel 

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
  NEAT_STUFF(I); 
 } 

} 

Loop construct name: 

• C/C++: for 

• Fortran: do 

The loop control index I is made 
“private” to each thread  by default.   

Threads wait here until all 
threads are finished with the 

parallel loop before any proceed 
past the end of the loop 
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Loop worksharing constructs 
A motivating example 

for(i=0;i<N;i++)   { a[i] = a[i] + b[i];} 

#pragma omp parallel 
{ 

 int id, i, Nthrds, istart, iend; 
 id = omp_get_thread_num(); 
 Nthrds = omp_get_num_threads(); 
 istart = id * N / Nthrds; 
 iend = (id+1) * N / Nthrds; 
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++)   { a[i] = a[i] + b[i];} 

} 

#pragma omp parallel  
#pragma omp for    

 for(i=0;i<N;i++)   { a[i] = a[i] + b[i];} 

Sequential code 

OpenMP parallel 
region 

OpenMP parallel 
region and a 
worksharing for 
construct 
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Loop worksharing constructs: 
The schedule clause 

•  The schedule clause affects how loop iterations are mapped onto threads 
–  schedule(static [,chunk]) 

–  Deal-out blocks of iterations of size “chunk” to each thread. 
–  schedule(dynamic[,chunk]) 

–  Each thread grabs “chunk” iterations off a queue until all iterations have 
been handled. 

Schedule Clause When To Use 
STATIC Pre-determined and 

predictable by the 
programmer 

DYNAMIC Unpredictable, highly 
variable work per 
iteration 

Least work at 
runtime : 
scheduling done 
at compile-time 

Most work at 
runtime : 
complex 
scheduling logic 
used at run-time 
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Combined parallel/worksharing construct 

• OpenMP shortcut: Put the “parallel” and the 
worksharing directive on the same line 

 double  res[MAX];  int i; 
#pragma omp parallel  
{   
    #pragma omp for 
    for (i=0;i< MAX; i++) { 
         res[i] = huge(); 
    }  
}   

These are equivalent  

 double  res[MAX];  int i; 
#pragma omp parallel for 
    for (i=0;i< MAX; i++) { 
         res[i] = huge(); 
    }  
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Working with loops 

•  Basic approach 
– Find compute intensive loops 
– Make the loop iterations independent ... So they can safely execute in 

any order without loop-carried dependencies 
– Place the appropriate OpenMP directive and test 

    int i, j, A[MAX]; 
     j = 5; 
     for (i=0;i< MAX; i++) { 
         j +=2; 
         A[i] = big(j);  
    }  

    int i,  A[MAX]; 
    #pragma omp parallel for 
     for (i=0;i< MAX; i++) { 
         int j = 5 + 2*(i+1); 
          A[i] = big(j);  
    }  Remove loop 

carried 
dependence 

Note: loop index 
“i” is private by 
default 



49 

Reduction 

•  We are combining values into a single accumulation variable (ave) … 
there is a true dependence between loop iterations that can’t be trivially 
removed 

•  This is a very common situation … it is called a “reduction”. 

•  Support for reduction operations is included in most parallel programming 
environments. 

 double  ave=0.0, A[MAX];    int i; 
   for (i=0;i< MAX; i++) { 
         ave + = A[i]; 
   }  
   ave = ave/MAX;  

•  How do we handle this case? 
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Reduction 
•  OpenMP reduction clause:    

reduction (op : list) 

•  Inside a parallel or a work-sharing construct: 
– A local copy of each list variable is made and initialized depending 

on the “op” (e.g. 0 for “+”). 
– Updates occur on the local copy.  
– Local copies are reduced into a single value and combined with 

the original global value. 

•  The variables in “list” must be shared in the enclosing 
parallel region.   

 double  ave=0.0, A[MAX];    int i; 
#pragma omp parallel for reduction (+:ave) 
  for (i=0;i< MAX; i++) { 
         ave + = A[i]; 
  }  
  ave = ave/MAX;  
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OpenMP: Reduction operands/initial-values 
•  Many different associative operands can be used with reduction: 
•  Initial values are the ones that make sense mathematically. 

Operator Initial value 
+ 0 
* 1 
- 0 

min Largest pos. number 

max Most neg. number 

C/C++ only 

Operator Initial value 
&  ~0 

| 0 

^ 0 
&& 1 
|| 0 

Fortran Only 

Operator Initial value 
.AND.  .true. 
.OR. .false. 

.NEQV. .false. 
.IEOR. 0 
.IOR. 0 

.IAND. All bits on 
.EQV. .true. 
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Exercise: Pi with loops 

•  Go back to the serial pi program and parallelize it with a loop 
construct 

•  Your goal is to minimize the number of changes made to the 
serial program. 

#pragma omp parallel 
#pragma omp for 
#pragma omp parallel for 
#pragma omp for reduction(op:list) 
#pragma omp critical 
int omp_get_num_threads();    
int omp_get_thread_num(); 
double omp_get_wtime(); 



53 

Example: Pi with a loop and a reduction 
#include <omp.h> 
static long num_steps = 100000;         double step; 
void main () 
{    int i;    double x, pi, sum = 0.0;  
      step = 1.0/(double) num_steps; 
      #pragma omp parallel  
      { 
           double x; 
          #pragma omp for reduction(+:sum) 

     for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
     } 

       } 
   pi = step * sum; 

} 

Create a scalar local to each thread to hold 
value of x at the center of each interval 

Create a team of threads … 
without a parallel construct, you’ll 
never have more than one thread 

Break up loop iterations 
and assign them to 
threads … setting up a 
reduction into sum.  Note 
… the loop index is local to 
a thread by default. 



Results*: pi with a loop and a reduction 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st 
SPMD 

1st 
SPMD 
padded 

SPMD 
critical 

PI Loop 

1 1.86 1.86 1.87 1.91 

2 1.03 1.01 1.00 1.02 

3 1.08 0.69 0.68 0.80 

4 0.97 0.53 0.53 0.68 
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The nowait clause 
•  Barriers are really expensive.  You need to understand when 

they are implied and how to skip them when its safe to do so.  

double A[big], B[big], C[big]; 

#pragma omp parallel  
{ 

 int id=omp_get_thread_num(); 
 A[id] = big_calc1(id); 

#pragma omp barrier  
#pragma omp for  

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);} 
#pragma omp for nowait 

 for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); } 
 A[id] = big_calc4(id); 

} implicit barrier at the end 
of a parallel region 

implicit barrier at the end of a for 
worksharing construct 

no implicit barrier 
due to nowait 



Limitations of Parallel For / Do 
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To use a for or do construct, loops must be countable.  
To parallelize this loop, it is necessary to first count the number of 
iterations and then rewrite it as a for loop.  
Or we can use tasks. More on this later… 

#pragma	omp	parallel	
{	
				…	
				while	(my_pointer	!=	NULL)	{	
								do_independent_work(my_pointer);	
								my_pointer	=	my_pointer->next;	
				}	//	End	of	while	loop	
				…	
}		



Performance Tips 

•  Is there enough work to amortize overheads? 
– May not be worthwhile for very small loops  (if clause can control this) 
– Might be overcome by choosing different loop, rewriting loop nest or 

collapsing loop nest 
•  Best choice of schedule might change with system, problem 

size 
– Experimentation may be needed 

•  Minimize synchronization 
– Use nowait where possible 

•  Locality 
– Most large systems are NUMA 
– Be prepared to modify your loop nests 
– Change loop order to get better cache behavior 

•  If performance is bad, look for false sharing 
– We talk about this in part 2 of the tutorial 
– Occurs frequently, performance degradation can be catastrophic 57 
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OpenMP Memory Model 

    •  All threads access the same, globally 
shared memory 

•  Data can be shared or private 
–  Shared –  only one instance of data 

q  Threads can access data 
simultaneously 

q  Changes are visible to all threads 
–  Not necessarily immediately  

–  Private - Each thread has copy of data 
q  No other thread can access it 
q  Changes only visible to the thread 

owning the data 
•  OpenMP has relaxed-consistency  

shared memory model 
–  Threads may have a temporary view of 

shared memory that is not consistent with 
that of other threads 

–  These temporary views are made consistent 
at certain places in code 
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Data environment: 
Default storage attributes 

• Shared memory programming model:  
– Most variables are shared by default 

• Global variables are SHARED among threads 
– Fortran: COMMON blocks, SAVE variables, MODULE variables 
– C: File scope variables, static 
– Both: dynamically allocated memory (ALLOCATE, malloc, new) 

• But not everything is shared... 
– Stack variables in subprograms(Fortran) or functions(C) called 

from parallel regions are PRIVATE 
– Automatic variables within a statement block are PRIVATE. 
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 double A[10]; 
     int main() { 

 int index[10]; 
    #pragma omp parallel   

       work(index); 
 printf(“%d\n”, index[0]); 

   } 

extern double A[10]; 
void work(int *index) { 
  double temp[10]; 
  static int count; 
  ... 
} 

Data sharing: Examples 

temp!

A, index, count!

temp! temp!

A, index, count!

A, index and count are 
shared by all threads. 

temp is local to each 
thread 



62 

Data sharing: 
Changing storage attributes 

•  One can selectively change storage attributes for constructs 
using the following clauses* (note: list is a comma-separated list of variables) 

– shared(list) 
– private(list) 
– firstprivate(list) 

•  These can be used on parallel and for constructs … other 
than shared which can only be used on a parallel construct 

•  Force the programmer to explicitly define storage attributes 
– default (none) 

These clauses apply to 
the OpenMP construct 

NOT to the entire region. 

default() can be used on 
parallel constructs 
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Data sharing: Private clause 

void wrong() { 
      int tmp = 0; 
#pragma omp parallel for private(tmp) 
      for (int j = 0; j < 1000; ++j)  

     tmp += j; 
      printf(“%d\n”, tmp); 
} 

•  private(var)  creates a new local copy of var for each thread. 
–  The value of the private copies is uninitialized 
–  The value of the original variable is unchanged after the region 

tmp was not 
initialized 

tmp is 0 here 

When you need 
to reference the 
variable tmp that 
exists prior to the 
construct, we call 

it the original 
variable. 
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Data sharing: Private clause 
When is the original variable valid? 

int tmp; 
void danger() { 
      tmp = 0; 
#pragma omp parallel private(tmp) 
      work(); 
     printf(“%d\n”, tmp); 
} 

•  The original variable’s value is unspecified if it is referenced 
outside of the construct 
–  Implementations may reference the original variable or a copy ….. a 

dangerous programming practice! 
– For example, consider what would happen if the compiler inlined 

work()? 

extern int tmp; 
void work() { 
      tmp = 5; 
} 

unspecified which 
copy of tmp tmp has unspecified value 



Firstprivate clause 

•  Variables initialized from a shared variable 
•  C++ objects are copy-constructed 
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incr = 0; 
#pragma omp parallel for firstprivate(incr) 
for (i = 0; i <= MAX; i++) { 

 if ((i%2)==0) incr++; 
 A[i] = incr; 

} 

Each thread gets its own copy of 
incr with an initial value of 0 
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Data sharing:  
A data environment test 

•  Consider this example of PRIVATE and FIRSTPRIVATE 

•  Are A,B,C private to each thread or shared inside the parallel region? 
•  What are their initial values inside and values after the parallel region? 

	variables:  A = 1,B = 1, C = 1 
#pragma omp parallel private(B)  firstprivate(C) 

Inside this parallel region ... 
l  “A” is shared by all threads; equals 1 
l  “B” and “C” are private to each thread. 

–  B’s initial value is undefined 
–  C’s initial value equals  1 

Following the parallel region ... 
l  B and C revert to their original values of 1 
l  A is either 1 or the value  it was set to inside the parallel region 
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Data sharing: Default clause 
•  default(none): Forces you to define the storage attributes for 

variables that appear inside the static extent of the construct … if you fail 
the compiler will complain.   Good programming practice! 

•  You can put the default clause on parallel and parallel + workshare 
constructs.  

The full OpenMP specification has other versions of the default clause, but they are not 
used very often so we skip them in the common core 

#include <omp.h> 
int main() 
{ 
     int i, j=5;      double x=1.0, y=42.0; 
     #pragma omp parallel for default(none) reduction(*:x) 
     for (i=0;i<N;i++){ 
         for(j=0; j<3; j++) 
               x+= foobar(i, j, y); 
     } 
     printf(“ x is %f\n”,(float)x); 
} 

The static extent 
is the code in the 
compilation unit 
that contains the 

construct. 
The compiler would 

complain about j and y, 
which is important since 

you don’t want j to be 
shared 



Performance and Correctness Tips 

•  There is one version of shared data 
– Keeping data shared reduces overall memory consumption 

•  Private data is stored locally, so use of private variables can 
increase efficiency 
– Avoids false sharing 
– May make it easier to parallelize loops 
– But private data is no longer available after parallel regions ends 
 

•  It is an error if multiple threads update the same variable at 
the same time (a data race) 

•  It is a good idea to use “default none” while testing code 
•  Putting code into a subroutine / function can make it easier 

to write code with many private variables 
– Local / automatic data in a procedure is private by default 

68 



69 

Exercise: Mandelbrot set area 

•  The supplied program (mandel.c) computes the area of a 
Mandelbrot set.  

•  The program has been parallelized with OpenMP, but we 
were lazy and didn’t do it right. 

•  Find and fix the errors (hint … the problem is with the data 
environment).  

•  Once you have a working version,  try to optimize the 
program. 
– Try different schedules on the parallel loop. 
– Try different mechanisms to support mutual exclusion … do the 

efficiencies change? 



The Mandelbrot area program 
#include <omp.h> 
# define NPOINTS 1000 
# define MXITR 1000 
struct d_complex{ 
   double r;     double i; 
};  
void testpoint(struct d_complex); 
struct d_complex c; 
int numoutside = 0; 
 
int main(){ 
   int i, j; 
   double area, error, eps  = 1.0e-5; 
#pragma omp parallel for default(shared) private(c, j) \ 
    firstpriivate(eps) 
   for (i=0; i<NPOINTS; i++) { 
     for (j=0; j<NPOINTS; j++) { 
       c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps; 
       c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps; 
       testpoint(c); 
     } 
   } 
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS); 
   error=area/(double)NPOINTS; 
} 70 

 
void testpoint(struct  d_complex c){ 
struct d_complex z; 
       int iter; 
       double temp; 
 
       z=c; 
       for (iter=0; iter<MXITR; iter++){ 
         temp = (z.r*z.r)-(z.i*z.i)+c.r; 
         z.i = z.r*z.i*2+c.i; 
         z.r = temp; 
         if ((z.r*z.r+z.i*z.i)>4.0) { 
         #pragma omp critical 
           numoutside++; 
           break; 
         } 
       } 
} 

•  eps was not initialized 
•  Protect updates of numoutside 
•  Which value of c does testpoint() see?  

Global or private? 
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OpenMP memory model 

  

l  Multiple copies of data may be present in various levels of cache, or in registers 

l  OpenMP supports a shared memory model 
l  All threads share an address space, but it can get complicated:  

proc1 proc2 proc3 procN 

Shared memory 

cache1 cache2   cache3 cacheN 

a 

a 

. . . 
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OpenMP and relaxed consistency 

•  OpenMP supports a relaxed-consistency  
shared memory model 
– Threads can maintain a temporary view of shared memory  

that is not consistent with that of other threads 

– These temporary views are made consistent only at certain  
points in the program 

– The operation that enforces consistency is called the flush operation 
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Flush operation 

•  Defines a sequence point at which a thread is guaranteed to 
see a consistent view of memory 
– All previous read/writes by this thread have completed and are visible 

to other threads 
– No subsequent read/writes by this thread have occurred 
– A flush operation is analogous to a fence in other shared memory 

APIs 
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Flush and synchronization 

•  A flush operation is implied by OpenMP synchronizations, e.g., 
– at entry/exit of parallel regions 
– at implicit and explicit barriers 
– at entry/exit of critical regions 
…. 
(but not at entry to worksharing regions)  

This means if you are mixing reads and writes of a variable across multiple threads, 
you cannot assume the reading threads see the results of the writes unless: 
 
•  the writing threads follow the writes with a construct that implies a flush. 
•  the reading threads preceed the reads with a construct that implies a flush. 

This is a rare event … or putting this another way, you should avoid writing code that 
depends on ordering reads/writes around flushes. 
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What are tasks? 

•  Tasks are independent units of work 
•  Tasks are composed of: 
–  code to execute 
– data to compute with 

•  Threads are assigned to perform the 
work of each task. 
– The thread that encounters the task construct 

may execute the task immediately. 
– The threads may defer execution until later Serial Parallel 
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What are tasks? 

•  The task construct includes a structured 
block of code 

•  Inside a parallel region, a thread 
encountering a task construct will 
package up the code block and its data 
for execution 

•  Tasks can be nested: i.e. a task may 
itself generate tasks. 

Serial Parallel 

A common Pattern is to have one thread create the tasks while the other 
threads wait at a barrier and execute the tasks 
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Single worksharing Construct 

•  The single construct denotes a block of code that is 
executed by only one thread (not necessarily the master 
thread). 

•  A barrier is implied at the end of the single block (can 
remove the barrier with a nowait clause). 

#pragma omp parallel   
{   

 do_many_things(); 
#pragma omp single 

 {     exchange_boundaries();   } 
 do_many_other_things(); 

}  



Task Directive 
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#pragma omp parallel 
{  
  #pragma omp single 
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
  #pragma omp task 
     billy();  
   }  
} 

One Thread 
packages tasks 

Create some threads 

Tasks executed by 
some thread in some 
order 

All tasks complete before this barrier is released 

#pragma omp task [clauses] 

                     structured-block     



Exercise: Simple tasks 
•  Write a program using tasks that will “randomly” generate one of two 

strings: 
–  I think race cars are fun 
–  I think car races are fun 

•  Hint: use tasks to print the indeterminate part of the output (i.e. the “race” 
or “car” parts).     

•  This is called a “Race Condition”.  It occurs when the result of a program 
depends on how the OS schedules the threads. 

•  NOTE: A “data race” is when threads “race to update a shared variable”.  
They produce race conditions.  Programs containing data races are 
undefined (in OpenMP but also ANSI standards C++’11 and beyond). 

#pragma omp parallel 
#pragma omp task 
#pragma omp single 
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Racey cars: solution 
#include <stdio.h> 
#include <omp.h> 
int main() 
{  printf("I think"); 
   #pragma omp parallel 
   { 
      #pragma omp single 
      { 
         #pragma omp task 
            printf(" car"); 
         #pragma omp task 
            printf(" race"); 
      } 
   } 
   printf("s"); 
   printf(" are fun!\n"); 
} 82 
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When/where are tasks complete? 

•  At thread barriers (explicit or implicit) 
– applies to all tasks generated in the current parallel region up to the 

barrier 

•  At taskwait directive 
–  i.e. Wait until all tasks defined in the current task have completed.   

 #pragma omp taskwait 
– Note: applies only to tasks generated in the current task, not to 

“descendants” . 



Example 
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#pragma omp parallel 
{  
  #pragma omp single  
   {  
  #pragma omp task 
      fred();  
  #pragma omp task 
      daisy();  
     #pragma taskwait 
  #pragma omp task 
     billy();  
   }  
} 

fred() and daisy() 
must complete before 
billy() starts 
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Linked list traversal 

•  Classic linked list traversal 
•  Do some work on each item in the list 
•  Assume that items can be processed independently 
•  Cannot use an OpenMP loop directive 

p = listhead ; 
while (p) {  
  process(p); 
  p=next(p) ; 
}  
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Parallel linked list traversal 

#pragma omp parallel 
{  
  #pragma omp single 
   {  
    p = listhead ; 
    while (p) {  
       #pragma omp task firstprivate(p)        
             {          
               process (p); 
             } 
       p=next (p) ; 
     }  
   }  
} 

makes a copy of p  
when the task is 
packaged 

Only one thread 
packages tasks 



Data scoping with tasks 
•  Variables can be shared, private or firstprivate with respect to 

task 

•  These concepts are a little bit different compared with 
threads: 
–  If a variable is shared on a task construct, the references to it inside 

the construct are to the storage with that name at the point where the 
task was encountered 

–  If a variable is private on a task construct, the references to it inside 
the construct are to new uninitialized storage that is created when the 
task is executed 

–  If a variable is firstprivate on a construct, the references to it inside the 
construct are to new storage that is created and initialized with the 
value of the existing storage of that name when the task is 
encountered 
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Data scoping defaults 
•  The behavior you want for tasks is usually firstprivate, because the task 

may not be executed until later (and variables may have gone out of 
scope) 
–  Variables that are private when the task construct is encountered are firstprivate by 

default 
•  Variables that are shared in all constructs starting from the innermost 

enclosing parallel construct are shared by default 

#pragma omp parallel shared(A) private(B) 
{ 
   ... 
#pragma omp task 
   { 
       int C; 
       compute(A, B, C); 
   } 
} 

A is shared 
B is firstprivate 
C is private 



Example: Fibonacci numbers 

•  Fn = Fn-1 + Fn-2 

•  Inefficient O(n2) recursive 
implementation! 

int fib (int n) 
{ 
   int x,y; 
   if (n < 2) return n; 
 
   x = fib(n-1); 
   y = fib (n-2); 
   return (x+y); 
} 
 
Int main() 
{ 
   int NW = 5000; 
   fib(NW); 
} 
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Parallel Fibonacci 
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•  Binary tree of tasks 

•  Traversed using a recursive 
function 

•  A task cannot complete until all 
tasks below it in the tree are 
complete (enforced with taskwait) 

•  x,y are local, and so by default 
they are  private to current task 

–  must be shared on child tasks so they 
don’t create their own firstprivate 
copies at this level!  

int fib (int n) 
{   int x,y; 
   if (n < 2) return n; 
 
#pragma omp task shared(x) 
   x = fib(n-1); 
#pragma omp task shared(y) 
   y = fib (n-2); 
#pragma omp taskwait 
   return (x+y); 
} 
 
Int main() 
{  int NW = 5000; 
   #pragma omp parallel 
   {  
       #pragma omp single 
             fib(NW); 
   } 
} 



Divide and conquer 

•  Split the problem into smaller sub-problems; continue until 
the sub-problems can be solve directly 

n  3 Options: 
¨  Do work as you split 

into sub-problems 
¨  Do work only at the 

leaves 
¨  Do work as you 

recombine 
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Exercise: Pi with tasks 

•  Consider the program Pi_recur.c.  This program uses a 
recursive algorithm in integrate the function in the pi program. 
– Parallelize this program using OpenMP tasks 

 
#pragma omp parallel 
#pragma omp task 
#pragma omp taskwait 
#pragma omp single 
double omp_get_wtime() 
int omp_get_thread_num(); 
int omp_get_num_threads(); 



Program: OpenMP tasks   
#include <omp.h> 
static long num_steps = 100000000; 
#define MIN_BLK  10000000 
double pi_comp(int Nstart,int Nfinish,double step) 
{   int i,iblk; 
   double x, sum = 0.0,sum1, sum2; 
   if (Nfinish-Nstart < MIN_BLK){ 
      for (i=Nstart;i< Nfinish; i++){ 
         x = (i+0.5)*step; 
         sum = sum + 4.0/(1.0+x*x);  
      } 
   } 
   else{ 
      iblk = Nfinish-Nstart; 
      #pragma omp task shared(sum1) 
           sum1 = pi_comp(Nstart,         Nfinish-iblk/2,step); 
      #pragma omp task shared(sum2) 
            sum2 = pi_comp(Nfinish-iblk/2, Nfinish,       step); 
      #pragma omp taskwait 
         sum = sum1 + sum2; 
   }return sum; 
} 93 

 int main () 
 { 
   int i; 
   double step, pi, sum; 
    step = 1.0/(double) num_steps; 
    #pragma omp parallel   
    { 
        #pragma omp single 
            sum =    

 pi_comp(0,num_steps,step); 
     } 
      pi = step * sum; 
 }    



Results*: pi with tasks 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) 
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads 1st SPMD SPMD 
critical 

PI Loop Pi tasks 

1 1.86 1.87 1.91 1.87 

2 1.03 1.00 1.02 1.00 

3 1.08 0.68 0.80 0.76 

4 0.97 0.53 0.68 0.52 
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Using tasks 

•  Don’t use tasks for things already well supported by 
OpenMP 
– e.g. standard do/for loops 
– the overhead of using tasks is greater 

•  Don’t expect miracles from the runtime 
– best results usually obtained where the user controls the 

number and granularity of tasks 
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Outline 

•  Introduction to OpenMP 
•  Creating Threads 
•  Synchronization 
•  Parallel Loops 
•  Data environment 
•  Memory model 
•  Irregular Parallelism and tasks 
•  Recap 
•  Beyond the common core: 
– Worksharing revisited 
– Synchronization: More than you ever wanted to know 
– Thread private data 
– Thread affinity and data locality 



OMP Construct Concepts 

#pragma omp parallel parallel region, teams of threads,  structured block, interleaved execution 
across threads 

int omp_get_thread_num() 
int omp_get_num_threads() 

Create threads with a parallel region and split up the work using the 
number of threads and thread ID 

double omp_get_wtime() Speedup and Amdahl's law. 
False Sharing and other performance issues 

setenv OMP_NUM_THREADS  N 
 

internal control variables. Setting the default number of threads with an 
environment variable 

#pragma omp barrier 
#pragma omp critical 

Synchronization and race conditions.    Revisit interleaved execution.    

#pragma omp for 
#pragma omp parallel for 

worksharing, parallel loops, loop carried dependencies 

reduction(op:list) reductions of values across a team of threads 

schedule(dynamic [,chunk]) 
schedule (static [,chunk]) 

Loop schedules, loop overheads and load balance 
 

private(list), firstprivate(list), shared(list) Data environment 

nowait disabling implied barriers on workshare constructs, the high cost of 
barriers. The flush concept (but not the concept) 

#pragma omp single Workshare with a single thread 

#pragma omp task 
#pragma omp taskwait 

tasks including the data environment for tasks. 

The OpenMP Common Core: Most OpenMP programs only use these 16 constructs 

97 


